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The problem of synthesizing the optimal control of the finite state of a linear stochastic 

system is considered. The problem reduces to the solution of Bellman’s functional eqna- 

Cons. BelIman’s equations are solved with reference to the problem of guidance toward a 

specified phase point. 

1. Statement ol the ptilem. Let us consider the controlled system described by the 

equations 

$ + A (t) y = B (t) f (t)? f (t) = 7.9 (t) + Q (t) (1.1) 

Here y is the n-vector of the phase coordinates yi; A = {Urj} and B = {bi,) are 

certain matrices of dimensions n x n and n x s, respectively, w is tbe a-vector function of 

Markov-type random perturbations and q is the g-vector of the discrete controlling signals 

qk’ 
The control is understood to be discrete in the sense that the magnitudes of the con- 

trolling signals over tbe gfven correction intervals Iti, ti+t) are determined at the initial 

instant tt (i =L 1, * . *, y) of the interval. 

The association of the variable quantity with tbe instant ti will be denoted by the snper- 

script i. 

It is assumed that the system (1.1) is completely controllable [l and 21, that the phase 

coordinates Yf are measurable, and that the a priori distribution of perturbations tuk is 

kllOWli. 

Our problem is to determine. on the basis of information about the instantaneous 

values of the phase coordinate vector y (6) a control q = q Cy) which, by the specified 

instant tt,+ t, brings the system (1.1) from the state y (tr) = y1 to some state 

Y (4, + ,f = Y yc t under the condition of min~ization of the mathematical expectation of 

the prescribed positive function o (y v+l). Thus, our task is that of finding the control 

which minimizes the functional 

2074 



Optimal discrete correction of motion of stochastic systems 1075 

I = (0 (y”+l)) (1.2) 

The angle brackets here denote the mathematical expectation. 

Formulated this way, our problem is related to that of the analytical construction of 

a regulator [3]. The stochastic aspect of the problem has been dealt with in several papers, 

of which [4] and [5] may be noted here. 

2. Discretization of the process. Within the time interval under consideration, the 

general solution of system (1.1) is of the form 

y(t)=N(C tl)Y’+BN(t,~)B(z)j(r)dz (2.1) 

t, 

Here N (t, z) = Y (t) Y-l (T) is the matrix function of the weight of system (l.l), 

Y is the fundamental matrix of the homogeneous equation of (1.1) normalized for t = tl and 

Y 
-1 

is the inverse matrix. 

Let us suppose that weknow the points $ = (yIi, . . ., yni) and pi+1 = 

(y:+l, . . .) Y?), through which the phase trajectory (2.1) in one of the actual realiza- 

tions passes atthe instants ti and ti+l, respectively, representing the end points of the 

i-th correction interval. 

On the basis of (2.1). let us express the vector of the final state of system (1.1) as a 

function of yi and yi+ ‘. We obtain 

tvt1 

Y v+l = N (twl, ti) yi + 1 N &+I, 7) B (7) f W d-c 

ti 

tv t1 
y”+l = N (t”+l, ti+l) yitl + 1 N (&+I, z> B (7) f (~1 d-c 

tikl 

(2.2) 

(2.3) 

Subtracting (2.3) from (2.2) we find, that 

tit1 
N &+1, &+1) yii-l = N (t",lP ti) yi + 

+ 1, N (tv+l, 7) [B (~1 w (z> + i Bk (a) or (r,] do 
(2.4) 

(i = 1, . . . . v) 
I k=l 

Here Bk is the k-th column vector of the matrix B. Further, we introduce the vectors 

tvt1 (2.5) 

rni” = N (tv;l, ti,l) yi”l + 1 N (&+I, T) <w(a)) dz (i = 0, . . . . v) 

titl 

.j = t’fN(tv+l, .,II(,),,(,,-(,(~))]dr,Q,‘=t~lN(t,,,. ~)&c(~)qr(~)d~ 

‘j ‘j 
(i=i, . . . . v; k=l, . ..I s) (2.6) 
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Here (UI) = ((WI>, l - -3 (WB)) is th e mathematical expectation of the random 

vector function w. 

By means of the vectors and relation (2.4) the finite state control process can be re- 

presented ES a Markov chain by virtue of the discreteness of the controlIing signafs. 

In fact, substituting (2.4) into (2.5) and taking into account Expression (2.6), we 

obtain 
+ 

??‘t~+l=m’+ e’+kzl Qki (i = 1, . . ., Y) 
(2.7) 

which defines (since yv+l = mv+l) y , i.e. the stepwise process of variation of the 

finite state as determined by the random vectors 8” and by the controlling signals 

By virtue of the random character of the vectors 8” , transformation (2.7) associates 

with specific values of m’ and Qi some set of random realizations of the vector m ii-1 . 

The law of distribution of this set, apart from the values of the vectors mi and Q: , de- 

pends on the distribution of the random vector 8’. 

3. BelIman’s equations. In order to determine the optimal control for system (I. 1) we 

turn to the method of dynamic programming [6]. Here we assume that the controlling 

signals pk belong to the class of functions for which 

htl 

Qri = s N &+I, ‘t) & (z) qk (x) dz = H&ki 
ti 

is fulfilled. 

the relation 
(3.1) 

(i=1, .,., Y; k=l, . . . . s) 

Here Hl is a certain vector which is independent of qk artd si are the controi para- 

meters constituting the vector i- . u - (u.~‘, . . ., u,‘). 

With consideration of (3.11, relation (2.7) becomes 

m'"l = mi + ei + fJ Hkiugi (i = 1, . . ., v) 
k=l 

(3.2) 

Since yv+l = mv+l, the problem of synthesizing the optimal control of system (1.1) 

consists in finding the sequence of vector functions * t& = ui (mi) (i = 1, _ . ., V), 

which optimizes Markov process (3.2) in the sense of minimization of criterion (1.2). 

Following the method of dynamic programming, we introduce the notation 

SYJk (mj) = m&r I = min,i (0 (y”+“)) (k=l,...,v; j===vfl--k) 

Here 62k (m’) is the minimum value of the criterion in a process consisting of k 

steps and beginning with the state m j Minimization is effected with respect to the vector . 

controls ui = ui (m”), and the mathematical expectation is computed from the set of 

random vectors gi fi = j, . . -, V). 

Finding the optimal control then reduces to the solution of Bellman’s functional 

Qk (m’) and n,, (V&j”). F or t e h p recess under consideration, Bellman’s equations are 

of the form 
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(3.3) 

S& (W) = min,v (0 (m*+l(mv))>, 52, (d) = min,f ( S2k_1 (mj+l (nr$)> 

(k = 2, . . .( v; i=v+1---k) 

Here the transformation m’+’ = m’+‘(m’) is defined in accordance with (3.2). 

4. The problem of guidance towards the o&h. Let us consider the solution of Equations 

(3.3) with reference to the problem of optimally precise guidance of systemfl.1) towards the 
origin. As the measure of closeness of the end point of the phase trajectory of motion (1.1) 

to the origin of the coordinate system we take the function w = (@‘+r)“. Equations (3.3) 

can then be written as 
(4.1) 

fit (mv) = minuv ((m”+l (TT~.~))~), S&(d) = min,i (Q;2,_1 (d+l(fd))) 

(k=2, . ..( Y; j=v+i-k) 

Let IIS tnm to the first equation of system (4.1). Expressing mv+l in terms of my 

in accordance with transformation (3.21, we find that 

Qn, (mv) = minuv ((W + ey -!- a&w~9> (4.2) 

Bearing in mind that 8” is a vector of random centered quantities, upon transformation 

of the right-hand side of (4.2) we obtain 

Q, (my) = min,v (mv + o& II.v~,v)B + ((ev)*) (4.3) 

The problem of finding the minimum with respect to U” = (@r”, . ‘ *, kgsv) in (4.3) 

reduces to the solution of the system of linear equations 

the 

(If,” * H,‘) ul” + (II,’ * H,‘) uz” + * ’ * -t_ (I&” * I&‘) u,” = - ?rz” - HI” 

(H:‘HJU;+ (H;.H;)U:+... +(H;*R.gY)U~=-m”.H; (44) 
. . . . . . . ...*...* ,..a 

(i;v - II,‘) u; + (Ix,’ ‘ Hz’) UC + 

. . . . . . . . . . . . . . . * 

I+* +(H;-HJU&=--??zY.Hg 

Here and below the dot is used to denote the scalar multiplication of vectors. 

The soiution of system (4.4) determines the optimal control nov in the final step of 

final step of the correction process, 

&z 9 =: - i I% (& . f&y 
@=I A’ 

(a = 1, . . . . s) (4.5) 

Here As: is the algebraic complement of the element (~~v.~~v) of the determinant 

A” # 0 af system (4.4). 

Substituting (4.5) into (4.31, we find the minimum value of the optimality criterion in a 

one-step process, 

Q, (nr”) = (mv - i No” i: s (m” * Hgy)f + ((ey) (4.6) 
a=1 B=l A' 

We shall show by induction that the sequence of optimal controls noj in the v-step 
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process as determined by the solution of Equations (4.1) is formed in accordance with 

the law 

ua ‘=_jI$(m’.I(Bj) (j=l,.,., Y; a-=1, . . . . s) (4.7) 

while the minimum value of the criterion is 

Here A ’ * 
Pa 

IS the algebraic complement of the term r ’ in the determinant A’. 
The vectors Rh are given by the recurrent relation 

Pa 

(4.9) 

j-1 c 5 

I(," =H,", ~~,~-j = H,+-j_ x KJ rt;-x z -‘$GK 
-(I&“-j * jy-_io 

x=* yl;1 ;i=1 Ay-x 

t 

i=f, . .) V-f\ 

a=l, , , ., s i 

The random vectors I/I’ are formed with the aid of a relation analogous in structure to 

(4.9), 

Lemma 4.1. Recurrent relation (4.9), where Ffi are arbitrary vectors of the n-dimensional 

Euclidean space generates the set of vectors R,i (i = 1, . . ., y; a = 1, . . ., s), 

in which all the vectors with different superscripts are pairwise orthogonal. 

Proof. We must show that 

Ii; J. I$;-” =3 0 (I 7 I,..., v--i; y--o ,..., z---1; DL, & := 1)‘.., s) (4.111 

The validity of (4.11) for x = 1 directly verifiable. The proof of identities (4.11) for 

any x can be carried out by induction. We shall show that if Equations (4.11) are valid 

for x = 1, . . . . k, then they are also valid for x = k + 1. 

In accordance with (4.9), for th e scalar product of the vectors K v-ib:l~ a and R:-v 

we have 

(4.12) 

Under our assumption as regards the validity of (4.11) for x = 1, . . . . k, relation (4.12) 

becomes 
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Since, in accordance with the properties of the algebraic complements of the deter- 

minant, 

it follows on the basis of (4.13) that we have the required expression 

R-W). RV-v = 0 
a c 

The induction is now complete and the lemma has been proved. 

Now let us prove the validity of expressions (4.7) and (4.8) for any v . 

We shall show that if a relation of the form (4.8) is valid for a k-step optimal process 

which begins with the state rni , then it is also valid for an optimal process consisting of 

k + 1 steps. Here the control a”j-l, which carries the system from the state rni-’ the 

state mi. must be formed in accordance with the law (4.7). 

For a k-step optimal process let us have 

!dk (mj) = (mj- jj i R,” i A%. (mi.f$5i)j + <i (,p-)%> 

i=j a=1 ,c~=l A’ rzj 
(4.14) 

(j=v+l-k) 

Replacing d in (4.14) by irs expression in accordance with (3.2) and taking account 

of (4.9) and (4.101, we obtain 

fik @j-l) = (?h - -j $ Rai jl !+ (&-1 . R;) + 

i=j a=1 

+ $ Ryj-lU,j-1 

Y'l 
+ *j-l)l + <p$jwY> 

In accordance with (4.1), for the optimal control we have 

S2k+l (mj-‘) = min,i-i(52k (rr+)) 

(4.15) 

(4.16) 

Since the mathematical expectation of the vector @” is equal to zero, substitntion 

of (4.15) into (4.16) yields 

&+I (mj-‘) = min 

+ i R,j-lu,j-l)2 + < i (qq2> 

(4.171 

Y=l r=j-1 ' 

The vector control U”j-l, which minimizes the right-hand side of (4.171, is given by 

the solation of the system of eqnations 

( &-I + i Ryj-lUyj-l 

r=l 

) - R,j-l- jj i (Rai . Rej-l) i I$! (&-I. fi;) = 0 

i=j a=1 5=1 

(&=I, . ..(S) 
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which, taking account of the orthogonality of the vector R,j-' relative to the vectors 

HL (Lemma 4.11, becomes 

J.11 
I-ll,lj-l _I_ rl,j-.luoj-i + . . . + rls~-lu,j-i =_= _ nzi-i . li,j-l 

1’21 j-ll(lj-l + r2zG*ugj-l .+ . . . + rq,Giu,j-l =-T _ ,A . &j-l 

(4.18) . . * . . . . . . . . . . . . . . . * . . . . . . . * . . . . . * 
r,lj-llll.i 1 + r,zj-lusj-l f ~ . . + rs;-lu,j-l ‘== - mC-1 . ~g~j-1 

Setting dim1 + 0 f and solving system (4.181, we find that 

$ 

Et 
/l&t 

Y 
oj-t I= _ V _ 

;??t Aj-t 
@t-t &j-“) (r== 1,. . ., s) (4.19) 

Comparing (4.19) with (4.71, we see that control (4.19) is an element of sequence (4.7). 

By substituting (4.19) into (4.17) we find the expression for the minimum value of the 

criterion in a (k + l&step optimal process, 

which is analogous in form to (4.14). 

Since the validity of formulas (4.14) and (4.19) for k = 1 has been demonstrated (see 

(4.5) and (4.6)), by induction they are also valid for any k, including k = v - Thus, the 

validity of expressions (4.7) and (4.8) has been proved. 

5. A special case. For mechanical systems, the dimensionality n of the phase co- 

ordinate space is double the dimeusionality s of the force vector space. In this important 

special case, the following theorem is vafid. 

Theorem 5.1. If n = 2s and if the vectors HIY-1, , . ., ffsY-‘, and HI*, . . ., 11,~ 

corresponding to two last correction intervals it,_,, &) and [t,, t,+t), are linearly 

independent, then the minimum value of the criterion I = (&‘f’)‘) is independent of 

the course of the process within the interval [t,, tY_-l). 

Proof. For Hi-l, . . ,, \ , I-I”-” and H ’ j ,. . .) H”, which are linearly independent, 

recurrent relation (4.9) generates n linearly independent vectors R l”-‘, . . . ,R I-l, and 

.R’ 1,. . . . R BY, forming the basis of the n-dimensional vector space Rj . Since, by 

Lemma 4.1, the vectors R ai (1 = 1, . _ . . S; i = 1. . . . , Y - 2) are orthogonal to the basis 

vectors, they can only be null vectors. Because of this, at the instants TV+ . . .qf+_2 

system (4.18) defining the optima3 control degenerates into the vector equation 

ou*== 0 (i = 1, . . ., v - 2) 

which is fulfilled for any u’. 

Hence, the minimum value of the criterion I is independent of the course of the 

process in the in{erval [tr, t,_,). The theorem has been proved. 

Let us find the expression for the minimum value of the optimality criterion in the 

case at hand. 
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Since R,i = 0 (a = 1, . . . , S; i = 1, . . -9 Y - 2), relation (4.81, taking 

account of (4.10). becomes 

(5.11 
s 

S& (ml) = min, I = ml - x I?~“_~ 2 s (ml . RpYwl) - 
[ 

a=1 p=1 

It is easy to show that the coefficients of the basis vectors R1”-‘, . . . ReYel, 
RIY, . . ., RsV in the square bracket in the right-hand side of (5.1) are the coordinates 

of the n-vector m’ relative to the indicated basis. 

Hence, for the minimum value of the criterion we obtain 

m&I = ((~9)2 f (EY--1 - i R,’ i dk!_(~~-l.R~v)~z) 

Y=l 9=1 A' 

In conclusion, the author should like to thank A.M. Letov for discussing the present 

paper. 
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